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Abstract

Three numerical solution techniques for nonlinear eardrum-type oscillations with an even function in the restoring force

are studied. The first suggested technique is named the target function technique. In the technique, the second zeros of the

target function is the circular frequency of motion. The second suggested technique is named the multiple-parameter

technique, and the involved parameters are evaluated from the governing equation, the initial conditions, and properties of

motion. The third suggested technique is named the direct integration technique. All techniques depend on the computer

computation significantly and provide very accurate numerical results. Finally, numerical examples are given.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Problems of nonlinear vibration in conservative systems have a long history. The well known nonlinear
vibration of the Duffing equation is an example in this field. The governing equation for the problem was
formulated in Refs. [1–3]. In the case of e being a small parameter, the equation is solved by using the
Lindstedt-Poincare technique, the method of multiple scales, and the method of averaging [1–3]. Almost all
perturbation methods are based on small parameter e so that the approximate solutions can be expressed in a
series of small parameter. There are some disadvantages in the perturbation method. Generally, in the
perturbation method one can only get, for example, several-terms solution for the small parameter. In the case
of e being a larger value, the perturbation method is no longer valid. Also, in this method it is not easy to judge
how the approximation is achieved. Some typical numerical examples show that the error is increasing if the
parameter e becomes larger [4]. The limitation of the perturbation method was also pointed out in Ref. [5].

On the other hand, many nonlinear vibration problems were solved by using the harmonic balance method
[6–11]. The merit of the harmonic balance method is to balance the coefficients of Fourier series in the
governing equation of the nonlinear equation, once the assumed motion is substituted in the equation.

In this paper, the nonlinear eardrum-type oscillations are studied. The nonlinear eardrum-type oscillation is
defined such that an even function for the displacement may contain the nonlinear restoring force [6,12]. For
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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the nonlinear eardrum oscillation, an iteration procedure for determining the motion and period of the
oscillation was suggested [6]. In the study, the results up to second round iteration were presented.

In this study, several numerical solution techniques for nonlinear eardrum-type oscillations are suggested.
Earlier, it was suggested that one could evaluate the eigenvalues of the ordinary differential equation (ODE)
by the iteration of solving the ODE [13–15]. Recently, a similar idea was developed, and the target function
method for evaluating the vibration frequency in the nonlinear vibration was suggested [4]. It is found that the
idea of target function method is a general one, which can also be used to the present analysis.

The idea of target function method can be described as follows. Assume that the ODE for the nonlinear
eardrum vibration with an initial condition (u ¼ A, du=dt ¼ 0 at the time t ¼ 0) is integrated in the interval
(0, tp). It is found that the function v(tp) is the mentioned target function, where the dependent variable v

( ¼ du/dt) is the velocity of motion. The second zero of the target function, denoted by tp ¼ Tp, will be the
period of motion.

The multiple-parameter technique is also suggested in this paper. The mentioned multiple parameters are
those undetermined values in the assumed solution. In the five-parameters technique, the motion is assumed as
uðtÞ ¼ c0 þ c1 cosðoptÞ þ c2 cosð2optÞ þ c3 cosð3optÞ, where op, c0, c1, c2, c3 are the circular frequency of
motion and Fourier coefficients, respectively. The five undetermined parameters op, c0, c1, c2, c3 are
determined by using the following conditions, for example, (a) the motion must have definite displacement and
acceleration at the starting time t ¼ 0, (b) any displacement–velocity pair (u, v) (v ¼ du=dt) must be located on
the motion trajectory of phase plane, etc. In the harmonic balance method, some equations are obtained from
the substitution of the assumed motion in the governing equation. However, in the present approach, one
equation is obtained from a substitution of the assumed motion in the trajectory equation on the phase plane
(see Eq. (3) below). Meantime, two equations are obtained from the acceleration condition at the times
opt ¼ 0 and opt ¼ p. In this sense, the multiple-parameters technique is not very the same as the harmonic
balance method.

The direct integration technique is studied finally. Since the period of motion can be evaluated in a closed
form, the direct integration technique can be used to obtain the motion of the problem. Numerical examples
are provided to prove the efficiency of the three suggested techniques. It is found that all three techniques can
give accurate results.

2. General analyses and the target function technique

In following analysis, the nonlinear eardrum oscillation is taken as an example. The oscillation is defined by
[6,12]

d2u

dt2
þ o2

ouð1þ euÞ ¼ 0, (1)

where u is the displacement, oo is the circular frequency given beforehand, e is a constant which may not be a
small value. The imposed boundary conditions take the form

ujt¼0 ¼ A;
du

dt

����
t¼0

¼ 0, (2)

where A is a positive value.
Multiplying both sides of Eq. (1) by 2du, and making integration will yield

v2 þ GðuÞ ¼ H, (3)

where

v ¼
du

dt
, (4)

GðuÞ ¼ o2
o u2 þ

2e
3

u3

� �
; H ¼ GðuÞju¼A ¼ o2

o A2 þ
2e
3

A3

� �
. (5)
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The motion trajectory in phase plane defined by Eq. (3) is plotted in Fig. 1. On the motion trajectory in
phase plane, the point (u, v) may move to the left side, and one more solution with the form ðu; vÞ ¼ ðB; 0Þ may
exist. This point (u, v) is indicated with notation Q2 in Fig. 1. With this condition, from Eqs. (3) and (5)
we have

B2 þ
2e
3

B3 ¼ A2 þ
2e
3

A3. (6)

From Eq. (6), we can obtain a solution for B as follows:

B ¼
�ð3þ 2eAÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 2eAÞð1� 2eAÞ

p
4e

. (7)

It is proved that, B is a negative value (Bo0), and �B4A is valid in general. From Eq. (7) we see that, since
B is a real value, 1�2eA must be positive. Thus, the following condition should be satisfied:

1� 2eA40 or 2eAo1. (8)

If the circular frequency of motion is denoted by op, from Eqs. (3) and (4) and the trajectory of motion
(Fig. 1) we will find dt=du ¼ �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H � GðuÞ

p
(for 0poptpp) and dt=du ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H � GðuÞ

p
(for ppoptp2p).

From this relation, we can obtain the period of the motion [1,16]

Tp ¼ 2

Z A

B

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H � GðuÞ

p . (9)

The period of motion Tp and the circular frequency of motion op can be expressed by the relation

Tp ¼
2p
op

; op ¼
2p
Tp

. (10)

For the harmonic motion case (e ¼ 0 in Eq. (1)), we have the period of motion To and the circular frequency
of motion oo as follows:

To ¼
2p
oo

; oo ¼
2p
To

. (11)

Furthermore, a reduced (or magnified factor) for the circular frequency is defined by

a ¼
op

oo

. (12)
v

Q3

Q4 (A,0)

Q2 (B,0)

Q0 (A,0)

o

Q1
Qm (um, vm)

(at ωpt = 2π)

(at ωpt = 0)

(at ωpt = π/2)

(at ωpt = π)

u

Fig. 1. The v versus u trajectory for solution of the eardrum oscillation on the phase plane.
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From above-mentioned analysis we see that it is important to find the motion of the nonlinear eardrum
oscillation.

In the small value of e, the Lindstedt-Ponicare perturbation technique is used [1,2]. After some manipulation
for Eq. (1) under condition (2), we have

op ¼ aoo; a ¼ 1�
5

12
ðeAÞ2, (13)

uðtÞ ¼ c0 þ c1 cosðoptÞ þ c2 cosð2optÞ þ c3 cosð3optÞ, (14)

where

c0 ¼ �
eA
2

1þ
2eA
3

� �
A; c1 ¼ 1þ

1

3
eAþ

29

144
ðeAÞ2

� �
A,

c2 ¼
eA
6

1þ
2eA
3

� �
A; c3 ¼

ðeAÞ2

48
A. ð15Þ

The target function method is introduced as follows. For a given value tp, we perform the integration for
Eq. (1) with the initial boundary value condition (2) on the interval (0, tp), and get the function u(t) and v(t)
(0ptptp) and v(tp), where vðtÞ ¼ du=dt. The obtained v(tp) is called the target function in this
paper. Obviously, the value of v(tp) is a function of the given time tp, and it is not equal to zero in general.
We can define the target function by f ðtpÞ ¼ vðtpÞ. The governing equation of the target function technique
takes the form

f ðtpÞ ¼ vðtpÞ ¼ 0. (16)

Assume that tp ¼ Tp1 and tp ¼ Tp are two successful zeros of the target function v(tp). Clearly, at the time
tp ¼ Tp1 the point (u(tp) v(tp)) is just at the point Q2 on the trajectory of the phase plane (Fig. 1). Meantime, at
the time tp ¼ Tp the point (u(tp) v(tp)) is just at the point Q4, which in turn is the starting point of the motion
Q0 (Q4 and Q0 have the same position). The half-division technique is used to evaluate the second zero of the
function v(tp), which is denoted by tp ¼ Tp Note that v(tp) is the value of du/dt at the time t ¼ tp from the
solution of Eqs. (1) and (2). Therefore, it is necessary to perform the numerical integration for Eqs. (1) and (2).
In this study, Runge–Kutta rule is used for the numerical integration [17]. After the value of Tp is obtained
numerically, op can be obtained immediately using Eq. (10).

A particular advantage of the suggested method is that one can get the motion of the oscillation in addition
to the circular frequency op. The obtained displacement may be expressed in the form:

uðtÞ ¼ c0 þ
XM
k¼1

ck cosðkoptÞ ð0ptpTp; M�integerÞ: (17)

Clearly, the involved Fourier coefficients can be evaluated easily from the obtained displacement u(t).
The reduced factor a and the Fourier coefficients c0, c1, c2, c3, c4 depend on A and e, and for the case

A ¼ 0:45 the computed results are listed in Table 1. In computation the M ¼ 100 divisions is used in the
Runge–Kutta method for the numerical solution of ODE [17]. From Table 1 we see that the target function
technique gives very accurate results, which coincide with the exact solution. Meantime, a set of motions u(t) is
plotted in Fig. 2. From Fig. 2 we see that the influence of e to the motion is significant. For example, for case
of A ¼ 0:45, e ¼ 0:1 we have B ¼ �0:464 and �B=A ¼ �1:031, and for case of A ¼ 0:45, e ¼ 1:0 we have
B ¼ �0:705 and �B=A ¼ �1:567.

In addition, if the perturbation technique is used, under same condition (A ¼ 0:45) the results for the
reduced factor a and the Fourier coefficients c0, c1, c2, c3 are listed in Table 2, which are obtained by using
Eqs. (13)–(15). If the error tolerance for the reduced factor a is assumed to be do1%, the perturbation
technique is valid for eo0.5 in the case of A ¼ 0:45.
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Table 1

Computed results from the target function technique, a value and the calculated Fourier coefficients for the solution of the eardrum

oscillation d2u=dt2 þo2
ouð1þ euÞ ¼ 0 with the condition uð0Þ ¼ A ¼ 0:45 and u0ð0Þ ¼ 0 (see Eqs. (1), (2), (9) and (10))

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

aex 0.9991 0.9964 0.9915 0.9842 0.9739 0.9598 0.9408 0.9146 0.8769 0.8153

atarget 0.9991 0.9964 0.9915 0.9842 0.9739 0.9598 0.9408 0.9146 0.8769 0.8153

b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c0 �0.0105 �0.0217 �0.0338 �0.0472 �0.0622 �0.0793 �0.0995 �0.1244 �0.1574 �0.2084

c1 0.4569 0.4643 0.4723 0.4809 0.4903 0.5009 0.5130 0.5273 0.5449 0.5687

c2 0.0035 0.0072 0.0113 0.0159 0.0211 0.0272 0.0346 0.0442 0.0576 0.0803

c3 0.0000 0.0001 0.0002 0.0004 0.0007 0.0011 0.0018 0.0028 0.0046 0.0085

c4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0008

aex—reduced factor from the exact solution using Eqs. (9), (10) and (12). atarget—reduced factor from the target function technique.

b—percentage error defined by b ¼ 100� ðatarget � aexÞ=aex, c0, c1, c2, c3, c4—The Fourier coefficients in Eq. (17).
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Fig. 2. Motion of the eardrum oscillation (u(opt), 0poptp2p) in case of A ¼ 0:45 and e ¼ 0:1, 0.5 and 1.0.

Table 2

Results from the perturbation technique, a value and the calculated Fourier coefficients for the solution of the eardrum oscillation

d2u=dt2 þo2
ouð1þ euÞ ¼ 0 with the condition uð0Þ ¼ A ¼ 0:45 and u0ð0Þ ¼ 0 (see Eqs. (13)–(15))

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

aex 0.9991 0.9964 0.9915 0.9842 0.9739 0.9598 0.9408 0.9146 0.8769 0.8153

apert 0.9992 0.9966 0.9924 0.9865 0.9789 0.9696 0.9587 0.9460 0.9317 0.9156

b 0.0027 0.0240 0.0893 0.2354 0.5175 1.0228 1.8999 3.4302 6.2456 12.3036

c0 �0.0104 �0.0215 �0.0331 �0.0454 �0.0582 �0.0717 �0.0858 �0.1004 �0.1157 �0.1316

c1 0.4569 0.4642 0.4719 0.4799 0.4883 0.4971 0.5062 0.5157 0.5256 0.5359

c2 0.0035 0.0072 0.0110 0.0151 0.0194 0.0239 0.0286 0.0335 0.0386 0.0439

c3 0.0000 0.0001 0.0002 0.0003 0.0005 0.0007 0.0009 0.0012 0.0015 0.0019

aex—reduced factor from the exact solution using Eqs. (9), (10) and (12). apert—reduced factor from the perturbation technique shown by

Eq. (13). b—percentage error defined by b ¼ 100� ðapert � aexÞ=aex, c0, c1, c2, c3—The Fourier coefficients in Eqs. (14) and (15).
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3. The multiple-parameter technique and the direct integration technique

Below, the multiple-parameter technique is suggested to study the nonlinear eardrum oscillation. The
multiple parameters are those undetermined values in the assumed solution. In the five-parameters technique,
the motion is assumed as

uðtÞ ¼ c0 þ c1 cosðoptÞ þ c2 cosð2optÞ þ c3 cosð3optÞ, (18)

where op, c0, c1, c2, c3 stand for five undetermined parameters. These parameters can be evaluated from the
general properties of motion. We can derive five conditions for the five parameters step by step.

From Eq. (18), we can obtain the velocity and the acceleration for the motion

du

dt
¼ �opðc1 sinðoptÞ þ 2c2 sinð2optÞ þ 3c3 sinð3optÞÞ, (19)

d2u

dt2
¼ �o2

pðc1 cosðoptÞ þ 4c2 cosð2optÞ þ 9c3 cosð3optÞÞ. (20)

In the first step, we consider the conditions at time opt ¼ 0. From the first condition in Eqs. (2) and (18),
we have

c0 þ c1 þ c2 þ c3 ¼ A. (21)

Meantime, from Eqs. (1) and (2), we can obtain the acceleration at the time opt ¼ 0

d2u

dt2
jopt¼0 ¼ �o

2
oAð1þ eAÞ. (22)

Substituting Eq. (20) into the left-hand side of Eq. (22) yields

o2
pðc1 þ 4c2 þ 9c3Þ ¼ o2

oAð1þ eAÞ. (23)

Similarly, at the time opt ¼ p, the (u, v) pair is just on the point Q2 (Fig. 1). From above-mentioned analysis
and Eqs. (1) and (2) we have

ujopt¼p ¼ B, (24)

d2u

dt2
jopt¼p ¼ �o

2
oBð1þ eBÞ. (25)

Substituting Eqs. (18) and (20) into Eqs. (24) and (25) yields

c0 � c1 þ c2 � c3 ¼ B, (26)

o2
pð�c1 þ 4c2 � 9c3Þ ¼ o2

oBð1þ eBÞ. (27)

We consider the condition at the time opt ¼ p=2. In this time, the (u, v) pair is assumed on some point Qm of
the trajectory (Fig. 1). From Eqs. (18) and (19), the displacement and velocity at this time can be expressed as

um ¼ ujopt¼p=2 ¼ c0 � c2; vm ¼
du

dt
jopt¼p=2 ¼ �opðc1 � 3c3Þ. (28)

Clearly, the (um, vm) must satisfy Eq. (3). Substituting Eq. (28) into Eq. (3) yields

o2
pðc1 � 3c3Þ

2
þ o2

oðc0 � c2Þ
2 1þ

2eðco � c2Þ

3

� �
¼ o2

oA2 1þ
2eA
3

� �
. (29)

Five equations (21), (23), (26), (27) and (29) are formulated to solve the five undetermined parameters op, c0,
c1, c2, c3. It is preferable to write the unknowns in an alternative form

b ¼ a2 ¼
op

oo

� �2

; g0 ¼
c0

A
; g1 ¼

c1

A
; g2 ¼

c2

A
; g3 ¼

c3

A
. (30)
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By using these notations, Eqs. (21), (26), (23), (27) and (29) are reduced to

g0 þ g1 þ g2 þ g3 ¼ 1, (31)

g0 � g1 þ g2 � g3 ¼ h1, (32)

bðg1 þ 4g2 þ 9g3Þ ¼ 1þ h2, (33)

bð�g1 þ 4g2 � 9g3Þ ¼ h1ð1þ h1h2Þ, (34)

bðg1 � 3g3Þ
2
þ ðg0 � g2Þ

2 1þ
2h2ðg0 � g2Þ

3

� �
¼ 1þ

2h2

3
, (35)

where

h1 ¼
B

A
; h2 ¼ eA. (36)

Finally, five equations (31)–(35) are formulated to solve the five undetermined parameters b, g0, g1, g2, g3.
Clearly, Eqs. (31)–(35) belong to a nonlinear algebraic equation with respect to five unknowns. Therefore, it is
necessary to use iteration in computation. It is found that the relevant results from the perturbation technique
shown by Eqs. (13)–(15) are the suitable values used in the first round of iteration. The iteration is convergent
in general.

Similarly, in case of A ¼ 0:45 the computed results for the reduced factor a and the Fourier coefficients c0,
c1, c2, c3, are listed in Table 3. It is found from Table 3 that the computed results are also very accurate in the
present technique. For example, for case of A ¼ 0:45 and e ¼ 1:0, the relative error for the reduced factor a is
�0.2618%.

If less terms are assumed in the motion, for example, letting

uðtÞ ¼ c0 þ c1 cosðoptÞ. (37)

In this case, simply let c2 ¼ c3 ¼ 0 in Eqs. (21), (26) and (29), we obtain

c0 ¼ ðAþ BÞ=2; c1 ¼ ðA� BÞ=2,

a ¼ op=oo ¼
2

A� B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � c20 þ

2e
3
ðA3 � c30Þ

r
. ð38Þ

Similarly, in case of A ¼ 0:45 the computed results for the reduced factor a and the Fourier coefficients c0,
c1, are listed in Table 4. It is found from Table 4 that the computed results have a deviation from the accurate
results. For example, for case of A ¼ 0:45 and e ¼ 1:0, the relative error for the reduced factor a is 5.8966%.

Note that, in both the target function and multiple-parameter techniques, all the unknowns including the
circular frequency op (or the reduced factor a ¼ op=oo) and the Fourier coefficients ci are obtained from the
numerical solution.
Table 3

Computed results from the multiple-parameter technique, a value and the calculated Fourier coefficients for the solution of the eardrum

oscillation d2u=dt2 þo2
ouð1þ euÞ ¼ 0 with the condition uð0Þ ¼ A ¼ 0:45 and u0ð0Þ ¼ 0 (see Eqs. (1), (2), (9) and (10))

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

aex 0.9991 0.9964 0.9915 0.9842 0.9739 0.9598 0.9408 0.9146 0.8769 0.8153

amult 0.9991 0.9964 0.9915 0.9842 0.9738 0.9598 0.9407 0.9144 0.8762 0.8132

b 0.0000 0.0000 �0.0002 �0.0007 �0.0019 �0.0049 �0.0118 �0.0287 �0.0756 �0.2618

c0 �0.0105 �0.0217 �0.0338 �0.0472 �0.0622 �0.0794 �0.0997 �0.1249 �0.1585 �0.2113

c1 0.4569 0.4643 0.4723 0.4809 0.4903 0.5009 0.5130 0.5272 0.5447 0.5681

c2 0.0035 0.0072 0.0114 0.0159 0.0212 0.0274 0.0349 0.0448 0.0590 0.0840

c3 0.0000 0.0001 0.0002 0.0004 0.0007 0.0011 0.0018 0.0028 0.0048 0.0092

aex—reduced factor from the exact solution using Eqs. (9), (10) and (12). amult—reduced factor from the multiple-parameter technique.

b—percentage error defined by b ¼ 100� ðamult � aexÞ=aex, c0, c1, c2, c3—The Fourier coefficients in Eq. (18).
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Table 4

Computed results from the multiple-parameter technique using uðtÞ ¼ c0 þ c1 cosðoptÞ, a value and the Fourier coefficients for the solution

of the eardrum oscillation d2u=dt2 þ o2
ouð1þ euÞ ¼ 0 with the condition uð0Þ ¼ A ¼ 0:45 and u0ð0Þ ¼ 0 (see Eqs. (1), (2), (9) and (10))

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

aex 0.9991 0.9964 0.9915 0.9842 0.9739 0.9598 0.9408 0.9146 0.8769 0.8153

amult 0.9993 0.9971 0.9932 0.9874 0.9793 0.9683 0.9536 0.9338 0.9060 0.8634

b 0.0203 0.0714 0.1750 0.3262 0.5516 0.8833 1.3591 2.0961 3.3236 5.8966

c0 �0.0070 �0.0144 �0.0225 �0.0313 �0.0410 �0.0520 �0.0648 �0.0800 �0.0995 �0.1273

c1 0.4570 0.4644 0.4725 0.4813 0.4910 0.5020 0.5148 0.5300 0.5495 0.5773

Table 5

Computed results from the direct integration technique, a value and the calculated Fourier coefficients for the solution of the eardrum

oscillation d2u=dt2 þo2
ouð1þ euÞ ¼ 0 with the condition uð0Þ ¼ A ¼ 0:45 and u0ð0Þ ¼ 0 (see Eqs. (1), (2), (9) and (10))

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

aex 0.9991 0.9964 0.9915 0.9842 0.9739 0.9598 0.9408 0.9146 0.8769 0.8153

c0 �0.0105 �0.0217 �0.0338 �0.0472 �0.0622 �0.0793 �0.0995 �0.1244 �0.1574 �0.2084

c1 0.4569 0.4643 0.4723 0.4809 0.4903 0.5009 0.5130 0.5273 0.5449 0.5687

c2 0.0035 0.0072 0.0113 0.0159 0.0211 0.0272 0.0346 0.0442 0.0576 0.0803

c3 0.0000 0.0001 0.0002 0.0004 0.0007 0.0011 0.0018 0.0028 0.0046 0.0085

c4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0008

aex—reduced factor from the exact solution using Eqs. (9), (10) and (12), c0, c1, c2, c3, c4—The Fourier coefficients in Eq. (17).
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In addition to suggested numerical techniques, the direct integration technique is introduced below. In the
technique, the circular frequency op is obtained from Eqs. (9) and (10), and the motion is obtained by a
numerical integration.

Making a substitution t ¼ opt to Eqs. (1) and (2), and considering a ¼ op=oo, one will obtain

d2u

dt2
þ

1

a2
uð1þ euÞ ¼ 0, (39)

ujt¼0 ¼ A;
du

dt

����
t¼0
¼ 0. (40)

Since opt (t ¼ opt) is defined in the interval 0poptp2p, t must be defined in the same integral 0ptp2p.
Simply making integration to Eq. (39) under condition (40) in the interval 0ptp2p, one will find the motion
immediately. The computed results for the Fourier coefficients are listed in Table 5. The results in Table 5
exactly coincide with those in Table 1.
4. Remarks

It is known that it is a rare case that an elasticity problem or a nonlinear vibration problem can be solved in
a closed form. The advanced electronic computers were not available in early years. In this case, investigators
had to pay attention to some solutions, which can be performed by hand, or very elementary computation.
Meantime, even though some techniques could be designed in early years, researchers could not complete the
solution because of some complicated computation.

This situation was changed after the advanced electronic computers were equipped. The present study
mainly depends on the successful numerical solutions and computer computation. Particular advantages for
the method are as follows. Since there is no difference in the numerical solution between the linear and
nonlinear differential equations, the difficulty caused from the nonlinearity disappears if target function
method is used. Also, a high accurate computation scheme is used, for example, 100 division is assumed in the
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numerical solution of ODE, the obtained result must be very near to the exact solution. Finally, all necessary
information, including the motion of vibration and the period of motion, can be obtained from solution.
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